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Abstract—Recent work has shown that a person’s sympathetic
arousal can be estimated from facial videos alone using basic
signal processing. This opens up new possibilities in the field
of telehealth and stress management, providing a non-invasive
method to measure stress only using a regular RGB camera.
In this paper, we present SympCam, a new 3D convolutional
architecture tailored to the task of remote sympathetic arousal
prediction. Our model incorporates a temporal attention module
(TAM) to enhance the temporal coherence of our sequential
data processing capabilities. The predictions from our method
improve accuracy metrics of sympathetic arousal in prior work
by 48% to a mean correlation of 0.77. We additionally compare
our method with common remote photoplethysmography (rPPG)
networks and show that they alone cannot accurately predict
sympathetic arousal “out-of-the-box”. Furthermore, we show
that the sympathetic arousal predicted by our method allows
detecting physical stress with a balanced accuracy of 90%—an
improvement of 61% compared to the rPPG method commonly
used in related work, demonstrating the limitations of using rPPG
alone. Finally, we contribute a dataset designed explicitly for
the task of remote sympathetic arousal prediction. Our dataset
contains synchronized face and hand videos of 20 participants
from two cameras synchronized with electrodermal activity
(EDA) and photoplethysmography (PPG) measurements. We will
make this dataset available to the community and use it to
evaluate the methods in this paper. To the best of our knowledge,
this is the first dataset available to other researchers designed
for remote sympathetic arousal prediction.

Index Terms—digital health, physiological computing

I. INTRODUCTION

WEARABLE sensors, such as smart watches, continue
to impact healthcare as they enable people to continu-

ously and non-invasively measure physiological signals where
they could not before. These sensors provide valuable data
about an individual’s health [1]–[4] and can serve to help
detect cardiovascular disorders [5], stress [6] or pain [7]. While
such wearable sensors have improved substantially, they have
some limitations. They have to be worn on the body, are not
easily scaled to an entire population, and usually only measure
from one location on the body (e.g., the wrist) [8].

In contrast, cameras are versatile sensors that can unobtru-
sively capture spatial and temporal information at a distance.
In addition, most of today’s computers and mobile devices
are equipped with user-facing cameras for the purpose of
video telephony. These properties make cameras attractive
as a means to measure physiological signals [9]. Examples
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of applications include remote patient monitoring [10] or
stress measurement [11]. While, to date, some cardiac and
pulmonary signals can be measured using a camera, including
heart rate (HR) [12], [13], there are many signals for which
there is little or no evidence that cameras alone are sufficient.

One important example is sympathetic arousal, which is a
measure of the activation of the sympathetic nervous system.
Following many different types of physical, mental, and/or
emotional stressors, the sympathetic branch of the autonomic
nervous system (ANS) is activated, leading to sympathetic
arousal and “fight-or-flight” responses such as increased sweat
responses [14]. Sympathetic arousal is, therefore, usually
captured with the help of the electrodermal activity (EDA),
which measures skin conductivity using electrodes placed on
two different locations on the body. Multiple previous works
have shown that changes in EDA are a reliable indicator of
stress [6], [15] and pain [16], [17]. Traditionally, EDA has
been measured at sites on the human body with a high density
of sweat glands, such as the fingers or palms, using electrodes
that are in steady contact with the person’s skin [18]. Most
recently, first works have shown that it is also possible to
measure EDA and sympathetic arousal completely remotely
from videos of the palm and the face [19], [20]. Bhamborea et
al. [19] have directly measured EDA by counting the number
of specular reflections on the palm. Braun et al. [20] were the
first to infer sympathetic arousal from both the face and the
palm by measuring blood perfusion, which they have shown
correlates with contact EDA. Our goal was to advance the
existing approaches and to provide the community with a
dataset specifically designed for this task.

In this paper, we present a novel approach for measuring
sympathetic arousal from facial videos leveraging neural net-
works for this task for the first time. Our method extends a 3D
convolutional architecture with a temporal attention module
(TAM) to learn spatial and temporal-domain features that lead
to predictions that highly correlate with gold-standard contact
EDA measurements. Our main contributions are:

• A 3D convolutional neural architecture that we tailored to
the task of remote sympathetic arousal prediction by in-
troducing a TAM and adapting the temporal dimension to
the dynamics of the EDA signal. Using leave-one-subject-
out (LOSO) cross-validation, we obtain a mean Spearman
correlation of 0.77 between our predicted sympathetic
arousal and the ground truth EDA signal, which is an



improvement of 48% compared to previous work [20].
• A dataset with 20 participants on which we evaluate

our model. It consists of videos of the face and hand
synchronized with measurements of the EDA and PPG
signals. We specifically designed the dataset for the task
of remote sympathetic arousal assessment and now make
it available on request to other researchers because we
believe that it opens up new possibilities in the field of
telehealth. To the best of our knowledge, this dataset is
the first dataset available to other researchers designed to
predict sympathetic arousal remotely.

• A classification model that leverages our predicted sym-
pathetic arousal and a remote photoplethysmography
(rPPG) signal for the task of detecting physical stress
due to pain. We show on this task that our method
outperforms rPPG-based approaches by 61%, achieving
a balanced accuracy/F1 score of 0.9/0.83 in predicting
whether a person is experiencing physical stress due to
pain. We highlight the limitations of relying solely on the
blood volume pulse (BVP) for detecting physical stress.

II. RELATED WORK

Compared to self-reports, which are commonly used for
stress detection, physiological sensing provides the oppor-
tunity for continuous temporal measurements. Traditionally,
wearable sensors such as smartwatches were used for physio-
logical measurement. Recently, non-contact (remote) methods,
which only use a regular RGB camera, have gained popularity
due to their potential for scalability and comfortability [9].
To date, a vast majority of the work in the field of re-
mote physiological sensing has focused on measuring cardio-
pulmonary signals such as the BVP or the breathing rate. The
BVP is inferred from the rPPG signal, which is calculated by
measuring the peripheral blood flow via light reflected from
the skin [21]–[24]. However, recent work has shown that the
HR and other extracted features from the BVP, such as heart
rate variability (HRV), are influenced by both sympathetic
and parasympathetic activity [25] and, therefore, give only
limited information about a person’s sympathetic activity [26],
[27]. EDA, on the other hand, which measures a person’s
sweat response, is considered a direct marker of sympathetic
activity and is commonly used for psychophysiological eval-
uations [28], [29].

Previous work using minimally invasive methods has shown
that repeated arousal stimuli induced by electrical stimulation
are followed by an increase in sympathetic nerve activity,
blood flow, and EDA in the forehead [30]. Other work obtained
similar results and found that facial blood flow changes due to
pain are not dependent on regional (orofacial) stimulation to
occure [31]. Furthermore, analysis of thermal imagery found
that arousal-induced sweat responses can be detected without
contact with the body using thermal cameras [32]. However,
thermal cameras are not widely available. Bhamborea et
al. [19] published early proof-of-concept results that EDA
could be inferred from the palm using only an RGB camera
by counting the specular reflections from the skin. Building

on that work [19] and the correlation between blood flow and
EDA on the forehead [30], [31], subsequent work has shown
that sympathetic arousal can also be inferred from videos of
the face using only a regular RGB camera by measuring the
peripheral blood flow to the forehead [20]. While this work
showed first proof that it is possible to remotely extract a
person’s sympathetic arousal from a video of the face, the
mean correlations across participants were moderate, and the
standard deviation (STD) was high. Nevertheless, we were
inspired by these results and aimed to develop a more robust
method and release a dataset for remote sympathetic arousal
prediction that is also available to other researchers. As this
previous work [20] indicates that they measure changes in
blood flow that correlate with EDA, we will refer to remotely
measuring sympathetic arousal instead of measuring EDA.

For camera-based physiological measurements, such as
rPPG, supervised neural architectures are state-of-the-art [22],
[23], [33]. The spatial information to predict sympathetic
arousal from the face should be similar to the spatial infor-
mation for rPPG prediction. However, the typical frequency
band of the sympathetic component of the EDA signal is
between 0.045–0.25 Hz [34], which is considerably lower than
the frequency band of 0.7–2.5 Hz from the HR [33], [35].
Therefore, we build upon previous work [23], which utilizes
3D convolutional layers to learn temporal domain features and
adapt our network architecture such that it can capture the
slow-changing temporal characteristics of the EDA signal.

III. DATASET

A. Recruiting and Recording

We recorded a dataset of N = 20 participants (5 female, 15
male, ages 19–36, µ = 26.7 and σ = 3.9) to investigate re-
mote sympathetic arousal prediction. Based on the Fitzpatrick
scale [36], 5 participants had skin type II, 10 skin type III, 3
skin type V, and 2 skin type VI. The dataset captures 9.5 min-
utes of video recording (with disabled white balancing, auto-
focus, and auto-exposure) of participants’ faces and hands,
with synchronized EDA recordings from the finger and PPG
recordings from the fingers and foreheads.

B. Apparatus

The participants placed their heads on a chin rest and
their hands on a table with their palms facing upwards (see
Fig. 1). The hands were secured with a belt over the thumb to
minimize any motion in the videos and we kept the lighting
and temperature in the room constant throughout the study.
We recorded the videos using two Basler acA1300-200uc
cameras pointed toward the participants’ faces and hands
and the physiological signals from a synchronized BIOPAC
MP160 that triggered the cameras by wire. The design of
the study is based on that of previous work [20], as they
have shown successfully that with their setup, it is possible
to remotely measure sympathetic arousal. To the best of our
knowledge, our dataset is the first for remote sympathetic
arousal prediction that will be available to other researchers.
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Fig. 1. The apparatus used for our study.

C. Study Protocol

The protocol alternated between periods of resting
(2 minutes) and periods of physical stress due to pain dur-
ing which the participants pinched their skin (self-pinching,
30 seconds) to stimulate an EDA response, starting with a
period of rest. To ensure that all participants had significant
changes in EDA during the study, we used a dependent t-
test for paired samples (p > 0.05), comparing the EDA levels
during the periods of rest to the periods of stress. Two (10%)
of the 20 participants did not have significant EDA responses
during the study (consistent with previous work [20], [30]),
and we did not consider them for the following evaluation.

IV. METHODS

Our work comprises two main components. First, we aim to
remotely estimate a person’s sympathetic arousal correspond-
ing to a contact-based EDA signal using only facial videos
as input. We use a deep-learning-based approach as these
approaches have shown stronger performance than signal-
processing-based approaches for related problems such as
rPPG prediction [22], [23], [33], [37]. Second, we train a
classification model that uses our remotely predicted signals
to detect if a person experiences physical stress due to pain.

A. Remote Sympathetic Arousal Prediction

1) Proposed Architecture: As the backbone of our ar-
chitecture, we use a 3D CNN [23] with a temporal input
length of T = 768 frames. While such 3D CNN-based
architectures have achieved impressive performance for the
task of video-based HR prediction, most of the used 3D CNN
architectures [23], [33] treat all input frames equally, ignoring
that different frames may provide different contributions to
the target prediction. For example, frames with more motion
might convey less information than frames with less motion.
To address this problem, we propose a temporal attention
module (TAM) that allows our model to learn to discriminate
between more and less important features along the temporal
dimension. Each TAM block is composed of a 3D average
pooling, a 3D convolutional layer (kernel size 1, stride 1,

padding 0), and finally, a multi-layer perceptron (MLP, using
the ReLU activation function) with a reduction rate r = 16
followed by a sigmoid activation function (see Fig. 2). Given
an image feature map Fin ∈ RC×T×w×h as input, a TAM
block infers a 1D temporal attention map At ∈ RT , which
is then broadcasted (copied) along the spatial and channel
dimension during multiplication. The final output Fout of the
attention process can be summarized as:

Fout = At ⊗ Fin, (1)

where ⊗ denotes element-wise multiplication. We add one
TAM block before each temporal up-sampling step. This
approach is inspired by the success of sequentially using atten-
tion maps along the channel and spatial dimensions [38]. Fig. 2
shows the final architecture and the proposed TAM block.
The total number of FLOPs for one batch using our model
is about 100 GigaFlops and the total number of parameters
of our model is about 790 k. Of these, the two TAM blocks
account for about 23 k parameters, which represents only about
3% of the total number of parameters.

2) Implementation Details: First, we detect the partici-
pants’ faces using OpenCV’s cascade classifier [39], crop the
images to the bounding boxes, and then resize the images to
a resolution of 72 × 72 (similarly as in previous work [20],
[23]). Then, we downsample the frame rate of the videos from
100 Hz to 10 Hz as a frame rate of 10 Hz is sufficient for the
typical frequency band of the sympathetic component of the
EDA signal (between 0.045–0.25Hz [34]). Finally, we take
the consecutive difference between the frames and standardize
them by dividing them through the STD of the pixel intensity
values [22]. We process the ground truth EDA signals in the
same fashion and use them as labels for our model.

Afterward, we trained our model using leave-one-subject-
out (LOSO) cross-validation, during which we iteratively held
out the data of one participant as test set, one as validation
set, and use the data of the remaining participants as training
set. We used a batch size of 4 for 30 epochs, a learning rate
of 0.001, and the mean squared error as the loss function.
To validate the stability of the models, we report the mean
obtained correlations across all participants and three random
seeds, which helps to ensure that our experiments are repro-
ducible and do not depend on a single random initialization,
such as the weight initialization of the neural network. We
trained our model on a GeForce RTX 4090 with a runtime of
about 9 hours for all subjects and three random seeds.

3) Evaluation: To compare the similarity between our
predicted and the ground truth signal, we use the Spearman
correlation as proposed in previous work [20]. We evaluate the
performance of our model to predict the raw EDA signal and
the slower-acting tonic component of the EDA signal, which
we obtain using the convex optimization approach [40]. As
previous work has found that longer temporal inputs help to
remotely predict sympathetic arousal [20], we also evaluate
how different input window sizes ranging from T = 256 to
T = 1024 frames (corresponding to 25.6 to 102.4 seconds)
influence the performance of our network. In addition, we
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Fig. 2. Our proposed neural architecture to predict sympathetic arousal from facial videos.

implement four baseline networks (one Transformer-based
model and three CNNs) that are used for remote HR prediction
to compare the performance of our proposed model to the
performance of these established networks. We trained all
models in the same fashion as our proposed model. Fur-
thermore, to compare our method with the current baseline,
we also implemented the blood pulsation amplitude method
(current baseline, a signal-processing-based approach) [20]
and evaluated it on our dataset. A valid concern is that our
model learns to predict small facial motions, such as micro-
expressions, which could potentially occur during phases of
stress. We, therefore, also calculate the Spearman correlation
between our predicted signals and the magnitude of the optical
flow of the face.

B. Physical Stress Detection

To assess how much value our remotely predicted sympa-
thetic arousal signal adds to the downstream task of physical
stress detection due to pain, we perform a classification on the
used dataset. The goal of the classification is to distinguish
between the non-stressful periods (resting) and the 30 second
stressful periods (self-pinching). We perform the classifica-
tion separately using only the ground truth signals obtained
from the contact measurement device (EDA and PPG) and
the camera-based predicted signals (our remotely predicted
sympathetic arousal trained with tonic EDA and a remotely
predicted rPPG signal). To predict the rPPG signal from the
camera, we use the original PhysNet network [23] trained on
our dataset with a LOSO cross-validation approach. For both
modalities, the contact-based and camera-based inputs, we
each run the stress detection once using only the PPG/ rPPG
signal, once using only the EDA/ remote sympathetic arousal
signal, and once with both signals together. In this way, we
aim to analyze the importance of the EDA/remote sympathetic
arousal signal compared to the PPG/rPPG signal in this study
setting. We divide the 9.5 minute recordings of each participant

TABLE I
THE CALCULATED STATISTICAL FEATURES FROM THE PPG/RPPG AND

THE CONTACT EDA/ PREDICTED SYMPATHETIC AROUSAL SIGNALS.

Signal Feature Description

PPG/ rPPG

µHR Mean HR
minHR Minimum HR
maxHR Maximum HR

µHRChange Mean change of the HR
SDNN STD of NN intervals

EDA/ predicted
sympathetic arousal

µEDA Mean
σEDA STD

minEDA Minimum value
maxEDA Maximum value

µEDAChange Mean of consecutive change

into 19 windows (3 windows of pinching and 16 windows of
resting) of 30 seconds each without overlap. For each window,
we extract 10 commonly used features for stress detection
from the PPG/rPPG and EDA/sympathetic arousal signals,
such as the mean HR or mean EDA (see Table I) [41]–[43]. As
a classifier, we use the Gradient Boosting (GB) classifier. To
train our classification algorithms, we again use LOSO cross-
validation. Given the unbalanced number of stress and rest
windows, we compute the balanced accuracy and F1-score to
evaluate our model performance.

V. RESULTS

A. Remote Sympathetic Arousal Prediction

We show the mean correlation ρ and the standard deviation
of our results across all participants and three different random
seeds in Table II. Using our proposed model with an input
window size of 768 frames, we obtained a mean correlation
of 0.73 ± 0.01 (raw EDA)/0.77 ± 0.02 (tonic EDA) between
our predicted signal and the ground truth EDA signal over all
participants. This is an improvement of 40%/48% compared
to using the current baseline method (Traditional Method [20],



a signal-processing-based approach) on our dataset. Also, the
STD decreases using our method from 0.24/0.26 to 0.19/0.20.

We further evaluated the influence of the input window size
on the model performance. The mean correlation gradually
increases from a mean correlation of 0.37/0.47 using a window
size of 256 frames to a mean correlation of 0.73/0.77 using a
window size of 768 frames. When using a larger window size
of 1024 frames, the mean correlation decreases to 0.65/0.71.
The other implemented network structures, which are usually
used for rPPG measurements, showed much lower perfor-
mance than our introduced model, with mean correlations
between 0.23 and 0.51. Furthermore, the Spearman correlation
between the calculated magnitude of the dense optical flow of
the facial video and our predicted signals is 0.23, indicating
that our model does not simply learn to predict facial motions.

To qualitatively cross-check the results, we plotted our
predicted sympathetic arousal and the ground truth EDA
signals for all participants. In Fig. 3, we show four predicted
signals and the corresponding ground truth signals. We can see
that our predicted signals closely follow the overall trend of
the ground truth signal. However, for individual participants,
our model is currently only capable of accurately predicting
the global trend and not smaller phasic changes, as we show
in the bottom-right plot of Fig. 3.

B. Physical Stress Detection

Table III summarizes the results of our physical stress
(due to pain) classification using the GB classifier. A simple
baseline classifier, which always predicts rest, would achieve
a balanced accuracy (BACC) of 0.5 and an F1 score of 0.4.
We obtain very similar maximum BACC and F1 scores for
both modalities, the camera-based signals and the predicted
camera-based signals. For both modalities, we obtain the
highest BACC using only the features from the EDA/our
remotely predicted sympathetic arousal signal. With only the
contact-based signals, the highest BACC is 0.94, and the
highest F1 score is 0.89. For the camera-based signals, the
highest BACC is 0.90, and the highest F1 score is 0.83.
However, for both the contact-based and camera-based signals,
the BACC and F1 scores drop considerably when using only
the PPG/rPPG signal compared to using the EDA/remotely
predicted sympathetic arousal. For the contact-based signals,
the BACC drops to 0.57 and the F1 score to 0.18 and for
the camera-based signals, the BACC drops to 0.56 and the
F1 score to 0.17. Using our remotely predicted sympathetic
arousal improves the balanced accuracy by 61% compared to
only using the remotely predicted rPPG signal.

VI. DISCUSSION

A. Remote Sympathetic Arousal Prediction

In our quantitative analysis, we have shown that we achieve
a 40% (raw EDA)/48% (tonic EDA) higher mean correlation
of 0.73/0.77 across all participants predicting the raw/tonic
EDA signal using our introduced model compared to the
current state-of-the-art method, which uses a signal processing
approach [20]. At the same time, we decrease the STD of the

correlation across all participants from 0.24/0.26 to 0.19/0.20.
Our qualitative analysis (see Fig. 3) also shows how closely
our predicted sympathetic arousal follows the global trend of
the ground truth EDA signal. Furthermore, we see a substantial
performance improvement of our network using the TAM
blocks compared to using other 3D CNN architectures like
PhysNet [23]. This indicates that the TAM blocks help to learn
the network to discriminate between more and less important
features. Also, we evaluated the performance of our network
using different window input sizes. The mean correlation
gradually increases from a mean correlation of 0.37/0.47 using
a window size of 256 frames (corresponding to 25.6 seconds)
to a mean correlation of 0.73/0.77 using a window size of
768 frames (corresponding to 76.8 seconds) and then decreases
again. This is consistent with previous work that obtained the
best performance using a window size of 60 seconds [20]. In
addition, the main spectral power density of an EDA signal lies
in the frequency band between 0.045–0.25 Hz (corresponding
to 4 to 22.2 seconds) [34], indicating that a window size of
22.2 seconds is beneficial to predict EDA. Our qualitative
analysis shows that our obtained correlations of 0.73/0.77
indeed reflect that our predicted signals capture the overall
trend of the ground-truth EDA signals accurately. However,
we also recognize that our model is not yet capable of
predicting smaller changes, and while our proposed model
considerably improved the mean performance, a standard
deviation of 0.19/0.20 still means that our model is not yet
able to accurately predict sympathetic arousal for individual
participants. Additionally, to show that our network does not
learn to simply predict motions that could occur during phases
of stress, we have calculated the correlation between our
predicted signals and the magnitude of the dense optical flow
of the videos of the participants’ faces. We have obtained a
mean correlation of only 0.23 across all participants, indicating
that our network does not simply predict motion.

Finally, previous work suggests that we do not measure
actual sweat responses when predicting sympathetic arousal
from facial videos but changes in blood flow that correlate with
sympathetic arousal (see Section II) [20]. Therefore, we expect
that our measured signal from the face and the EDA signal
do not perfectly match, e.g., due to small temporal offsets
between the two signals. However, as we discuss below, we
believe that our stress classification results show that for the
downstream task of detecting physical stress, we do not need
to be able to reconstruct the ground truth EDA signal perfectly.

B. Physical Stress Detection

To help reveal where the predicted sympathetic arousal has
utility for downstream inferences, we performed a physical
stress (due to pain) detection experiment. Using camera-
based predicted sympathetic arousal, we obtain a maximum
BACC/F1 score of 0.90/ 0.83 for detecting physical stress
due to pain with a GB classifier using our remotely predicted
sympathetic arousal. This is almost as high as using the
contact-based EDA signal with a maximum BACC/F1 score
of 0.94/ 0.89. Furthermore, we see in Table III that using only



TABLE II
MEAN AND STD OF THE SPEARMAN CORRELATIONS (ρ) OVER THREE RANDOM SEEDS BETWEEN THE PREDICTED SYMPATHETIC AROUSAL AND THE
GROUND TRUTH EDA SIGNALS ACROSS ALL PARTICIPANTS. OUR METHOD IMPROVES THE MEAN PERFORMANCE BY 40% (RAW EDA)/48% (TONIC

EDA) TO 0.73/0.77 AND DECREASES THE STD BY 0.05/0.06 COMPARED TO THE TRADITIONAL METHOD (CURRENT BASELINE) [20].

Raw Tonic

Method Window Mean ρ STD Mean ρ STD

TS-CAN [33] 768 0.23± 0.03 0.32± 0.02 0.33± 0.05 0.33± 0.04
PhysFormer [37] 768 0.28± 0.02 0.24± 0.02 0.23± 0.02 0.28± 0.03

DeepPhys [22] 768 0.31± 0.05 0.26± 0.02 0.39± 0.06 0.28± 0.03
PhysNet [23] 768 0.43± 0.02 0.25± 0.03 0.51± 0.01 0.31± 0.01

Traditional Method [20] — 0.52 0.24 0.52 0.26
Ours 256 0.37± 0.06 0.22± 0.04 0.47± 0.03 0.21± 0.04
Ours 384 0.49± 0.04 0.25± 0.00 0.58± 0.03 0.26± 0.02
Ours 512 0.64± 0.00 0.23± 0.02 0.63± 0.00 0.29± 0.03
Ours 768 0.73± 0.01 0.19± 0.01 0.77± 0.02 0.20± 0.01
Ours 1024 0.65± 0.00 0.28± 0.02 0.71± 0.02 0.29± 0.01

Improvement of ours
+0.21 -0.05 +0.25 -0.06over best previous method
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Fig. 3. Visual comparison between our predicted sympathetic arousal (blue) and the ground truth tonic EDA signal (black) for four participants. At minutes
2, 4.5, and 7, the participants are instructed to pinch themselves for 30 seconds to cause a sympathetic stress response. Note that for individual participants,
such as participant 11, the model is currently only able to predict the global trend accurately. This difference is attributed to the nature of our method, which
estimates sympathetic arousal by analyzing blood flow changes rather than measuring absolute EDA values.

either the contact-based PPG signals or only the remotely
predicted rPPG signals, an accurate physical stress (due to
pain) prediction is not possible for our dataset. A relatively
modest stimulus like self-pinching does not seem to change
features related to the blood volume pulse (BVP), such as
heart rate, enough to allow for an accurate physical stress
prediction. Very similar results were reported in related works.
With contact-based signals, accuracies between 0.51 and 0.75
were obtained using only heart rate features (compared to 0.57
for our dataset) and accuracies of up to 0.95 with multi-modal
features using the heart rate and the EDA signal to detect
pain (compared to 0.94 for our dataset) [41], [44]. Previous
work also obtained similar results using only features obtained

from a remotely predicted rPPG signal, achieving accuracies
between 0.59 and 0.63 (compared to 0.56 for our dataset) [45],
[46]. This highlights the limitations of relying solely on BVP
and the importance of having a second physiological metric,
such as our proposed remote sympathetic arousal, to detect
physical stress.

C. Limitations and Future Work

We recognize that our model and dataset have certain
limitations. First, our study is highly controlled. To minimize
any motion or lighting changes, we placed the participants’
heads on a chin rest and kept the lighting constant in the room.
Therefore, only limited conclusions can be drawn about the



TABLE III
BALANCED ACCURACIES (BACC) AND F1 SCORES USING ONLY THE

CONTACT-BASED SIGNALS (PPG AND EDA), ONLY OUR CAMERA-BASED
PREDICTED SIGNALS (RPPG AND REMOTE SYMPATHETIC AROUSAL
(RSA)), AND BOTH TOGETHER. NOTE THAT WE CAN ONLY PREDICT

PHYSICAL STRESS ACCURATELY USING EDA/OUR PREDICTED RSA AND
NOT USING THE PPG/RPPG SIGNALS.

PPG/rPPG EDA/rSA BACC F1

Contact
(reference measurement)

✓ ✗ 0.57 0.18
✗ ✓ 0.94 0.89
✓ ✓ 0.93 0.88

Camera
(estimated)

✓ ✗ 0.56 0.17
✗ ✓ 0.90 0.83
✓ ✓ 0.88 0.80

Baseline — — 0.50 0.40

generalizability of our approach to more real-world situations.
However, we believe that it is essential to first establish
a dataset that makes it possible to evaluate the feasibility
of possible methods under more controlled conditions. In
future work, we aim to extend our dataset to include more
natural scenarios and to evaluate our model’s robustness to
such conditions. Second, while we showed in our qualitative
analysis that our model can predict the global trend of the EDA
signal, we also found that it is not yet capable of predicting
the small phasic components. We believe that one promising
approach could be to investigate different loss functions, which
give greater weight to the errors of the phasic component.
This could help to improve the model’s sensitivity to the more
rapid phasic fluctuations. Finally, our dataset comprises data
from 5 female and 15 male participants. We acknowledge that
we should have paid more attention to a balanced ratio to
create a balanced dataset and to potentially also allow for an
investigation of the performance differences of our approach
for female and male participants. We aim to correct this
oversight in the future by recording further participants.

D. Broader Impacts

Perhaps the most obvious application for measuring sympa-
thetic arousal remotely is stress management. Previous work
has shown that EDA/sympathetic arousal measurements can be
used to help people better understand their stress patterns [47].
In addition, currently used wearable sensors, such as smart-
watches, can be very inconvenient for the user, or it might
not be possible to wear them for safety reasons, e.g., for
assembly line workers. Using a camera in such cases could
offer unique opportunities for deployment, otherwise hard to
achieve. Finally, we believe that it is important to consider the
potential for a new technology such as ours to be deployed
with negligence or by a bad actor. While people might be
able to hide their emotions by not expressing them, they
are, in general, not able to control their physiological states.
Therefore, it is important that there are mechanisms in place
to be aware of remote measurements and consent to them.

VII. CONCLUSION

In this paper, we have demonstrated that it is possible
to improve the performance of remote sympathetic arousal
prediction from a video of a person’s face by using a 3D CNN
architecture tailored to the temporal dynamics of sympathetic
arousal. To evaluate our approach, we contribute the first
dataset specifically designed for the task of remotely predicting
sympathetic arousal and make it available to other researchers.
Using LOSO cross-validation, we have demonstrated that our
proposed network obtains a mean correlation of up to 0.73
(raw EDA)/0.77 (tonic EDA) between the predicted sympa-
thetic arousal and the ground truth EDA signal, marking a
40%/48% improvement compared to previous work. However,
we also recognize that our model is not yet capable of
predicting more detailed phasic changes of the EDA signal for
individual participants. Furthermore, we trained a GB classifier
with features extracted from the contact EDA and PPG signals
and our remotely predicted sympathetic arousal and rPPG
signals to detect physical stress caused by pain. We achieved
a mean BACC of 0.90 in predicting physical stress using
only our remotely predicted signals. Our stress classification
experiments also revealed that using contact PPG and remotely
predicted rPPG signals alone does not yield accurate results
for physical stress detection due to pain in our dataset. This
underlines the importance of our proposed approach to offer
an alternative physiological measurement to accurately predict
physical stress. We hope that our contributed network and
dataset can assist other researchers in exploring various signal
processing and machine learning techniques for developing
accurate remote sympathetic arousal prediction models.
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